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I.  INTRODUCTION

Adaptive arrays based on the LMS algorithm (1) are very appealing
as a means of protecting conmunication systems from interference (2,3).
These antennas can automatically track desired signals and simultan-
eously null interfering signals. Moreover, they can do this using
conformally mounted elements on an irregular surface, such as an air-
craft. Possible applications of adaptive arrays include communication
systems subject to accidental interference, RFI and jamming.

An important problem with adaptive arrays, however, is their lim-
ited dynamic range. Two factors restrict the dynamic range of an adap-
tive array. First, there are equipment limitations. The multipliers,
amplifiers, etc., in the LMS feedback loops operate properly only over
a certain range of signal power. However, although equipment limita-
tions are very real, they are not fundamental; that is, they are not
due to the LMS feedback concept itself. Rather, they appear because
the equipment performance does not match the mathematical behavior
of the LMS algorithm. Also, it is possible to overcome such limita-
tions with improved design.

The second factor limiting dynamic range is more fundamental,
because it is inherent in the LMS algorithm. The limitation occurs
because the speed of response of the LMS feedback loop depends on re-
ceived signal power. The array responds slowly to a weak signal and
rapidly to a strong signal. This situation makes it difficult to ac-
comodate a wide range of signals because, in most applications of adap-
tive arrays, system requirements limit both the minimum and maximum
speed of response of the array. As a result, the array can handle
only a limited range of signal power without exceeding speed of re-
sponse bounds.
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In this report we address the problem of variable time constants
in the LMS algorithm. The purpose of the report is to present an im-
proved form of adaptive array feedback loop that appears to solve this
problem. The feedback loop described produces the same steady-state
weights as the LMS algorithm, but has the property that its time con-
stants are nearly independent of signal power.

In Section II of the report, we establish notation and discuss
the time constant behavior of the LMS array. In Section III, we de-
termine an "ideal" control law for the adaptive array. In Section
IV, we describe a feedback l1oop whose performance approximates this
ideal control law. Section V presents an example showing the transient
behavior of an array using this feedback loop.

II. DYNAMIC RANGE LIMITATIONS IN THE LMS ARRAY

An LMS adaptive array (1) has weights controlled by the gradient
law

dwi 2
n " -kai[e (t)] A | i‘i iZM (1)

1th array weight, k is a positive constant, M is the

where ws is the
number of elements in the array and vh{:ez(tn is the ith component
of the gradient of the squared error signal. The error signal ¢(t)

is defined by
(t) = R(t) A (t) (2)
t) = t) - *
€ le WX

where R(t) is the Reference Signal (or "Desired Response" (1)) and
xi(t) is the ith quadrature signal in the array. Substituting Equation
(2) in Equation (1) yields

dw1
o = 2%k x(t) e(t), (3)
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which corresponds to the feedback Toop shown in Figure 1.

OTHER w;x; TERMS

R(t)

Figure 1. The LMS feedback loop.

By substituting Equation (2) into Equation (3) and collecting
terms involving w; on the left, we find that the weights in an LMS

array satisfy the system of differential equations
M w2k xxTw = 2k XR(t), (4)

where w is the weight vector,

w=| (5)




and X is the signal vector,

x](t)
xz(t)

Xop(t)

The matrix XXT and the vector XR(t) are time-varying, so it is dif-
ficult to solve Equation (4) exactly. However, for most applications
of adaptive arrays, w varies slowly compared to the signals xi(t) and
R(t) and one may obtain approximate solutions to Equation (4) by re-
placing XXT and XR(t) by their time average values. Let & and S denote
these averages:

o= xxI, (7a)

XR(E) . (7b)

With this substitution, the system in Equation (4) becomes

M+ 2Kow = 2s, (8)
which has constant coefficients and may be solved by diagonalizing
" weight is

=2kz,t =2kAout
2 S R A1 e 2M + Ci'
2M

¢. The solution for the i

w; = A

(9)

where A, , Ry s «..s A; are constants determined by initial condi-
tions, x{,xz,‘... AomM agg the eigenvalues of %, and C; is the steady-
state value of Wi We note that the time constant of the jth exponen-
tial term is

7 = ,,IQ—J . (10)
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A dynamic range problem arises in the LMS array because the eigen-
values of @, and hence the time constants, depend on the signal power
received by the array. A strong signal produces a large eigenvalue
and a weak signal produces a small eigenvalue. In a typical design
problem the strongest signal is interference and the weakest signal
is thermal noise. In this case it can be shown (4) that the maximum
and minimum eigenvalues, MAX and Mins are related by*

A Ny
_MAX Mg, (11)
AMIN

where I is the interference power and N is the thermal noise power.
The eigenvalue ratio in Equation (11) can easily be quite large. For
example, if we wish to null interference 60 dB above thermal noise,
Amax Will be approximately 106 times AMIN' Equation (9) shows that

a typical weight transient will include a fast exponential term as-
sociated with AMAX and a slow exponential term associated with AMIN'
The time constants for these two terms will be in the ratio given by
Equation (11). We will refer to this ratio as "time constant spread".

In most applications, there are design bounds on both the minimum
and maximum time constants. For example, suppose an array is to oper-
ate in an aircraft communication system. On the one hand, the fastest
speed of response is limited by the signal modulation rate. (If the
weights are too fast, they interact with the desired signal modula-
tion.) On the other hand, the slowest speed of response is limited
by the need for the array to be fast enough to track aircraft motion.

*The approximation is accurate as long as the interference has much

,reater power than any other signal present.
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Thus, system requirements usually limit the allowable range of
AMAX/XMIN' Because of Equation (11), there is then a maximum value
of I/N that the system can accommodate. In the author's experience,
this value is usually disappointingly Tow. One is often forced to
accept a design that does not meet speed of response requirements in
order to handle even a modest value of I/N. This is the dynamic range
problem in the LMS array.

ITI. THE IDEAL CONTROL LAW

To find a way to correct this problem, it is helpful if we first
examine the reason for time constant spread in a more basic way. We
will observe that time constant spread occurs because the LMS algorithm
is based on a gradient approach. A gradient approach causes the weight
vector to move along some parts of its trajectory at a different speed
than along other parts. This viewpoint will also suggest a way of
modifying the LMS loop to solve the problem.

We may use a simple two-dimensional example as an illustration.
From Equation (2), the average squared error may be written

ez(t) = ﬁ?kt) - ZWTS + wT w (12a)
= it (w—wopt)T o), (12b)
where
PR |
Wopt * ) (13)

is the weight vector yielding minimum ez(t), and

—:»;2,,_,-; = Rz(t) -sTels
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is the value of €“(t) when w = w

opt* (T denotes the transpose.) Con-

sider a two-dimensional ez(t)-surface defined by

0
wopt = (15)
1
and
1 -0
ok ; (16)
0 100

The resulting ez(t)-surface has elliptical loci of constant ez(t) in
the w-plane, as shown in Figure 2. A typical trajectory traveled by

a weight vector under the LMS algorithm is shown in Figure 2. The
weight vector starts at an arbitrary point Wy and travels to wopt along
the curved path shown. At each point of the trajectory, the weights
meve inmthe'stégégit-descent direction, which is always perpendicular
to a constant ¢°(t) locus. Since the eigenvalues are unequal, the
weights do not move in a straight line toward wopt’ but along a curved
path, as shown. Moreover, because the LMS algorithm makes the time
rate change of w proportional to the slope of the ¢"(t)-surface, the
weight vector moves from wo to Wy in Figure 2 rapidly, since the slope
is large in this region, but from point W, to Wopt slowly, because

the slope is small in this region. The movement from W, to W, con-
tributes a fast term to the weight response, and the movement from

W tow contributes a slow term.

opt

We observe that the spread in time constants would be eliminated
if the weights were always forced to move in a straight line toward
Wopt with a value of dw/dt not dependent on the slope of the surface.
Such a preferred trajectory is shown in Figure 2. This preferred tra-
jectory is in the vectg%_girection '("'"opt)’ for any given w. How-
ever, the gradient of ¢ (t), as computed from Equation (12b), is

7
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Vw[ ez(t)] = 2¢ (w-wopt), (17)

so the LMS algorithm is

WL e (e

> s (18)

I.e., the LMS algorithm moves the weights in the direction of the vector
-¢(w-wopt), not in the direction -(w-wopt). Since ® has unequal eigen-
values, -0(w-wopt) is usually in a different direction than -(w-wopt).
Moreover, the presence of ® in Equation (18) causes the slope of the

ez(t)-surface to influence the speed of response.

GRADIENT &
TRAJECTORY

PREFERRED
TRAJECTORY

Figure 2. Constant & in the w-plane.

Clearly, a better strategy would be to eliminate the @ from the
right hand side of Equation (18), i.e., to control the weights accord-
ing to the equation

g% = -2k(w—wopt). (19)

If this were done, the weights would move directly toward wopt and
the eigenvalues of ® would not influence the speed. To see how such

a control law may be realized, we note from Equation (17) that

8
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N-Wont =-% o7 vw[.;z?;;] 4 (20)
Hence Equation (19) is the same as

oot I, (21)
or equivalently,

¢ty LA (22)

We will refer to this as the ideal control law for the adaptive array.
It differs from the LMS algorithm only in the presence of the matrix ¢
multiplying dw/dt. In the next section, we describe a feedback loop
that implements this equation.

IV. A MODIFIED FEEDBACK LOOP

When Equation (2) is substituted in Equation (3), the LMS algo-
rithm becomes

dwi 2M
el 2kx1-(t)[R(t) - 5-21 xj(t)wj] g (23)

Let us consider, instead of this, the control law

d"i 2M 2M dw
F5 = 2k A 3 x4(t) [R(t) - jZ] X5=C jz] xj(t) HTJJ .
(24)

In this equation, ¢ is a gain constant and A{.} represents an averaging
operation to be defined below. This equation corresponds to the feed-
back loop shown in Figure 3. This loop is similar to that in Figure
1, except for the inclusion of the averaging operation A{.]} and the

i S —
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extra amplifier, summer and multipliers to form
2M dw,

¢ ) xlt)
T x5
and subtract it from the reference signal.

OTHER xjw; TERMS

Y A A A A

i dw;
OTHER x;—— TERMS
) dt

Figure 3. The modified feedback loop.

We define the averaging operation A{.} as a finite time average.
i We assume the weights are slowly varying in comparison to the signals
xi(t) and R(t). We let A{.} represent a time average over an interval
short enough that w, and dwi/dt may be considered constant over this
interval, but long compared to the carrier cycles of xi(t) and R(t).
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The actual value of the time interval to be used and the reasons for
including this averaging in the loop will be discussed below. For
the moment, we settle for this definition, which allows us to make
the approximation

M dw 2M dw
A{xi(t) 321 xj(t) 31-1} =j§1 A{xi(t) xj(t)} 31:'1 S

(25)

Since the right side of Equation (23) is simply -k Vw[ez(t)], we may
also write :

[ M ] 2
2k A {x;(t) [R(t) - xs(t)ws|[ = -kvWi A decte)}] -

(26)
Equation (24) may then be expressed in matrix form as
[r+ 2kea (T Q¥ = kv, [A {2(0))D. (27)

To understand why the feedback loop in Figure 3 is useful, let
us suppose for the moment that the averaging operation A{:} is good
enough that

A DX} =0 (28)

and
A {(t)} = &(t) (29)

where ¢ and e?(t) denote the infinite time averages of XXT and ez(t).

Then Equation (27) becomes

11




[+ 2 01qF = -, [ )yl , (30)

which is similar to the ideal control law in Equation (22), except
for the extra term I on the left. To see how the weights behave under
this equation, we collect all terms involving w on the left side.
Since

v [ef(t)] =2low-s] (31)

(see Equation (12a)), we have

[+ 2kc ol J¢ + 2kow = 2k . (32)
Now a typical weight has the solution
: 2K\ el g (e
_ : @ qu t TERGh s I+2IE‘:"ZM
w.(t) = A, e + A; e ST S e F s
i iy 12 iZM i
(33)

The jth time constant in this transient response is

1+2kcxj

juls et 3

T

which may be compared with Equation (10) for the LMS algorithm. We
find that now, as xj becomes large, Ty does not become arbitrarily
small as in Equation (10) but is bounded below by c. By choosing c
properly, we may limit the fast response speed of the array without
limiting the signal ratio I/N.

The steady-state solution of Equation (8), the LMS algorithm,

(35)




which is known to be the optimal solution (1). We note, however, that
' - Equation (32) has the same steady-state solution, regardless of the
i; value of c, so it also yields optimum weights.

lg % The difference between the LMS algorithm and Equation (32) is
: in their transient behavior. In particular, if ¢ is large enough that

e ca o o

for every eigenvalue Aje Equation (32) may be approximated by
2kolc ¥ +wl=as, (37)

or simply

c%{-+w=o'18, (38)

which is equivalent to the ideal control law in Equation (22).* In

this case, all components W, have the same time constant, c. There
is only one time constant in the array response, and it is independent
of signal power.

Equation (30) differs from the ideal control law because of the
extra term I on the left. This difference means that when the array
receives weak signals, so 2kco is negligible compared to I, Equation

E | (30) becomes the LMS algorithm. With strong signals and large 2kcé,
k| ] the I term is negligible and Equation (30) becomes the ideal control
law. For in between cases, there will still be some spread in time
( constant if 2kcky < 1 for some A;. But with the loop modified as shown
. in Figure 3, the shortest time constant is dictated by c rather than
{; by the strongest signal.

*Substitute Equation (31) into Equation (22) to obtain this form.

[
n 13
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An additional remark is helpful for understanding the control 1
loop in Figure 3. If Equation (34) is compared with Equation (10), |
we see that each T for the new feedback loop is larger than the cor- “;
responding T for the LMS loop. Therefore, when the modifications
shown in Figure 3 are added to the LMS loop, the result is to slow
down the response time of the array. To obtain a fixed speed of re-
sponse from the array, ¢ is chosen large enough that the fast time
constant terms in the LMS loop are slowed down until they are of the
same speed as, or slower than, the slow terms in the LMS loop. The
modified loop in Figure 3 is thus slower than the LMS loop, but has
E the advantage of fixed time constants. Constancy of speed of response
is much more important for system design purposes than obtaining the
fastest possible response. Of course, the real time speed of response
of a hardware implementation would be adjusted to a suitable value
by choosing gains appropriately.

B— u,mﬁﬂrw.‘“:.?w.Z"“{ (aes

We now return to the averaging operation A{.} in Equation (24).
A {+} was defined as a finite time average over an interval short com-
pared to changes in W, and dwi/dt, but long compared to the fluctu-
ations of xi(t) and R(t). We now elaborate on this definition.

Let us rewrite Equation (26) in the form

2M 2M
2k A{xi(t)[R(t) - JX=1 xj(t)wj] = 2k Af{x;(t)R(t)} - 2k j{=1 A{xi(t)xj(t)} W

(39)

Using this and Equation (25) in Equation (24), we find that the weights
in the modified loop satisfy the system

[1+2kcABXT)] §F +2ca XXThw=2kA Rt} .  (40) )

il e o - - v e
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First, we observe that the matrix A {XXT} multiplying dw/dt must
be nonsingular if the modified 1oop is to have the desired behavior.
To see why this is so, assume for the moment that the matrix A {XXT}
f can be approximated by a constant matrix, and make a rotation of co-
1 ordinates in Equation (40) into the principal axes of A{XX'}. Let

= N e .

w=2B8, (41)

where B is a 2M x 2M orthogonal coordinate rotation matrix and n is
the weight vector expressed in the principal axes of A{XXT} (the “normal* :
weight vector). Let

a* =87 Apxx"} B

= : (42)

AoM

be the matrix of eigenvalues of A{XXT}. After rotating coordinates,
we find that the jth normal weight ny satisifes the differential eq-
uation

d
(1e2kexy) —b  + 204 ng = 2y, (43)

where qj is the jth component of the column vector Q:

Q = BT A{XR(t)} . (a8)

L B B ——— N e




As long as 2kcA§ > 1, we see that the time constant for ny will be
approximately c. For any given set of Ag, we can assure that all
transients in the array response have time constant ¢ by choosing c
large enough that 2kcA§ >1 for all Ag, including the smallest one.
Clearly it will be possible to do this only if the smallest eigen-
value is not zero.* If A{XXT} has any zero eigenvalues, the feedback
loop modification in Figure 3 will not have the intended effect.

These remarks make it clear that some averaging is definitely
necessary. For, without averaging,

AT} = xxT, (45)

and the matrix XXT is always of rank 1. (X is an eigenvector of XXT

with eigenvalue XTX. Any other vector orthogonal to X is an eigen-
vector with eigenvalue 0. Hence xx' always has 2M-1 zero eigenvalues.)
We should not expect fixed time constants in this case.**

*A{XXT} is positive semidefinite, so all X > 0.

**If the averaging is omitted, the weights satisfy the system obtained
by substituting Equation (45) in Equation (40):

[ 1e2kexx" 13+ 2kxxTw = 2k XR(t)

This may be rearranged by multiplying on the left by the inverse

-1 [, 2ke T
[ 1+2kexxTy =[1 - Zke o oxx l
1+2keX X
which yields
dw [ 2k ]  pol [ 2k ]
+ XX'w = | —2£—| XR(t)
@ | Je2kexTx 142keX X

Comparing this with Equation (4) for the LMS algorithm shows that the
only difference between the two is that the gain constant 2k in the

LMS loop is replaced by the quantity __Zi_ﬁf.
T 142keX " X
As long as 2kcX'X > 1, the effect of th;s change is simply to normalize
the loop gain of the modified loop to X' X, the total power in the ar-
ray. This has the effect of fixing the fastest time constant in the
array, but does not solve the problem of time constant spread.

in the modified loop.
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Next, with A {+} defined as a finite time average, we must deter-
mine what averaging time is required to make all the eigenvalues non-
zero. This question is most easily answered by considering the problem
in discrete form. Suppose the signals in the array are sampled every : 1
AT seconds. Let XJ denote the jth sample of vector X, 1

B TTTI———— ,mm«ww

¥ed ey U U TED S SEs .

| X (387) :
| X, (3 4T)

| & : =

| % Xon(Jat)

E A finite time average of XX' over an interval T can be approximated

by an average of K samples of XXT:

I t K

A T 1 T €1 T

i A{xx'} = T XX'dt = 4 Z Reka 4 (47)

: J t-T Jj=1 373 i
L where T = KAT. Clearly, at least 2M samples are required to make

A{XXT} nonsingular. I.e., the matrix X,X| is of rank 1, 1/2(x1 T+
X,X ?) is of rank 2 (if X, and X, are not collinear)*, 1/3(XX 1+x2xT ?

2
X3X3) is of rank 3 (if Xys X, and X5 are not coplanar), and so forth, :
| Hence to be nonsingular, the matrix i
' o K
| 1 y T
% XX (48)
‘- K jsl \j J

must contain at least 2M samples (i.e., K > 2M). For K=2M, the matrix
will be nonsingular as long as the X1 are linearly independent.

To make the vectors x1 independent, it is sufficient that the
sampling times for the X; be far enough apart. Since

*We can always find 2M-2 vectors orthogonal to both x* and x2. s0 there
will always be 2M-2 zero eigenvalues for 1/2(XIXI+XZX2). e

17
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M
T
XX = k.yl X (18T)X, (3aT), (49)

we have

2M
Tx.} =
eyl L RJLG-NAT, (50)

where E{+} denotes the expectation and R, (1) is the autocorrelation
function of xk(t), k

ka(r) = E{xk(t)xk(t+r)} . (51)
If the sampling time AT is large enough that all the terms R [ (j-1)ar ]
are small, then E{XTX } is small, and X and Xj are near]y orthogonal
on the average. The value of AT required to make R (1) = Lo may be
determined from the spectral density of the signals K (t) For ex-
ample, suppose the signals have flat power spectral density Sx(u» of

Po watts/radian per second over a bandwidth of B Hz., as shown in

Figure 4:
Sx(w)
A
27B 27B
| e————
...... Lpo._._..._
i —- > W
-?go W,

Figure 4. Power spectral density of Xi(t).

Then the autocorrelation function (the Fourier Transform of S (w)
is

PRu—
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Ry, (1) = 2PB SIBT coswgr (52)

so we can insure that on the average the vectors x; are orthogonal
by choosing

arfl . (53)

Since at least k=2M samples of X will be required to make
K
1 T
[ GEURREE
nonsingular, the time interval used in Equation (47) should be approxi-
mately

ygl (54)
iti,
% 8 T
Al xxT} =mf xx' dt . (55)
.. 2M
i

We may also express the required averaging time in terms of carrier
cycles. Since the carrier period is

Bk (56)

where f° is the carrier frequency in Hz., we have
- 2M
T 157?;7 To . (57)

Note that B/fo is the fractional bandwidth.

19




oty RSN TR

In practice, simulations of Equation (24) indicate that the av-
eraging time can be somewhat smaller than this amount. The reason
is that to make A{XXT} nonsingular requires only linear independence
of the xi, not orthogonality. The value of AT given in Equation (53)
makes the Xi orthogonal, which is a stronger condition. In general,
one finds that as the averaging time is reduced, ¢ must be made larger
to maintain 2kcAj > 1 for the smallest eigenvalue. The smallest eigen-
value goes to zero as the averaging time is reduced.

V. AN EXAMPLE

Now we give a simple example to illustrate the behavior of the
feedback loop in Figure 1. Consider a two-element array of omnidi-
rectional elements with four quadrature weights, as shown in Figure
5. We assume a CW desired signal of amplitude Ad is incident on the
array from broadside at frequency Wy We also assume a double side-
band, suppressed carrier AM interference signal of amplitude Ai’ car-
rier frequency Wg» and modulation frequency Wy is incident from an
angle 9i off broadside. The resulting signals in the array are

xq(t) = Agcosw t + Ascosupt cos(w t-o;),

xz(t) = Agsinu t + Ajcosut sin(mot-¢i), (58)
x3(t) = Adcosnot + Ajcosw,t cosw t,
and
x4(t) = Adsinnot + Ajcosgt sin»ot.
where
w.L
i = -%— sin @, . (59)

L is the element spacing and ¢ is the velocity of light.* We let the
reference signal be

*This ¢ is unrelated to the gain constant c defined earlier.

20
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R(t) = coswr . (60)
DESIRED
SIGNAL * INTERFERENCE
G;
i o
QUADRATURE QUADRATURE
HYBRID HYBRID

The array weights satisfy Equation (40).

Figure 5.

A two-element array.

To determine typical

weight transients, we have solved these equations numerically using
a discrete (difference equation) approximation, as follows.

tities in the equation are sampled array AT seconds.

the 1th sampled value of the weight vector. We approximate

w(g+12-w§1)

Substituting this in Equation (40) yields an equation for aw(Jj):

[ + 2keA;{xxT} ] aw(3) = 2kaA; (XL R(t)-X"w]},

where Aj{'}
jth

samples; i.e.,

A1l quan-

We let w(i) be

(61)

(62)

denotes the average of the quantity in brackets at the
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sample. AJ{'} is computed as a moving average over the last J
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A T
astirr(e)-a) = 4 kij_m f, R-XTw(k)] (64)

where Xk and Rk are the kth sampled values of the signal vector X and
the Reference Signal R(t). At each iteration, the averaged quantities
in Equations (63) and (64) are computed, the simultaneous equations
for Aw(j) are solved, and the resulting Aw(j) is added to w(j) to pro-
duce the new value of the weight vector for the next iteration. This
iterative process is continued until w(j) is determined.

Figures 6, 7 and 8 show a typical set of weight transients, com-
puted for the parameter values

A 3

d
2k = .05

(4 samples/carrier cycle)
n(half-wavelength element spacing)

30°
s O-S(Dd

and A{+} is an average of 8 samples (J=8).*

*Note that according to Equation (57), the averaging time should be

A4 carrier cycles or 16 samples, since we sample 4 times per carrier
cycle. However, simulation results indicate that an 8 sample average
is adequate in this case.
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Figure 6. Weight transients with no interference.
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r : Figure 6 shows the weight transients that result when A.=0 (i.e.,
E ¢ when there is no interference). Figure 7 shows the transients when
Ai=3°’ and Figure 8 shows them when Ai=3000° In all cases, the weight
vector starts from an arbitrary value of

B
;‘.'
§;~
&
%

£
"

N e
L]

Comparison of Figures 6, 7 and 8 shows that in all three cases
the weight transients proceed with essentially the same time constant.
None of the parameters in the feedback loops have been changed from
one figure to the next. The only change is the interference amplitude,
which is seen to have no effect on the speed of response of the loops.
This constant speed of response is the behavior we set out to obtain.

VI. CONCLUSIONS

An improved feedback loop for adaptive arrays has been presented.
This loop yields the same steady-state weights as the LMS algorithm,
but has the advantage that its time constants are essentially indendent
of signal power. Use of this loop should simplify design constraints
that arise because of dynamic range requirements.

The modified feedback loop is shown in Figure 3. This loop in-
cludes an averaging operation, defined by

t
Al =2 [ f)dn.
T

An averaging time of approximately

ral . +
(8/f,) ©

e Y R e ™ Gl e 4 v e




is adequate to make the system have the desired behavior, where M is

the number of array elements, B/fo is the fractional bandwidth, and
To is the carrier period.

o |

As a closing remark we comment that the feedback modifications
shown in Figure 3 can also be used with an array of the type originally
; i described by Applebaum (5). In this case, the reference signal in
: Figure 3 is eliminated and the main beam direction is controlled by
adding an appropriate steering vector component to each weight. This

type of array is useful when the desired signal angle of arrival is
known in advance.
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